

Transformer Monitoring System

Comprehensive on-line diagnostics solution

Transformer Monitoring System is intended for on-line diagnostics of transformers and chokes. Constant monitoring permits optimization of machine maintenance and utilization. Early warning of impending faults helps prevent costly equipment repairs and power outages. The functionality of the monitoring system, including integrated mathematical models, has been proven though long-term operation on 400 and 220 kV transformers. Quality, reliability and minimum maintenance are a significant benefit for the customer. The solution incorporates our extensive experience with the implementation of monitoring and control systems for the power industry.

→ Basic Characteristics

The system monitors important transformer operating parameters and equipment status, and regularly performs expert calculations. The system can be adapted to the nature of the monitored machine and the customer's preferences, and in a number of cases the solution can be simplified significantly.

Equipment Status Measurement and Monitoring, Outputs						
	Oil temperature in the upper and lower part of the tank					
	Tap changer oil temperature					
Temperatures	Outdoor temperature					
	Cooler input and output oil temperature					
	Hot-spot temperatures of individual windings if sensors are					
	installed on the transformer					
Electrical narameters	Transformer winding currents					
Electrical parameters	Capacitive bushing voltage					
Equipment status and	Cooling system pump operation					
' '	Cooling system fan operation					
position	Transformer tap changer position					
Dissolved gases in tank oil	Hydrogen/composite value					
,	Oil CO content					
(as per analyzer)	Oil moisture content					
	Comprehensive on-line DGA analysis, if applicable					
Contact outputs	Alarm and control outputs					
Other parameters	Optional addition of measurement and signalling					

TECHSYS cubicle on the tank of a 350 MVA 400/110 kV transformer

	Mathematical Models
Transformer load and losses	Transformer load
	Immediate transformer losses
	Transformer operating time
	Permitted transformer overloading
IFC 600076-7:2005	Hot-spot temperatures of individual windings (calculation)
ageing calculation	Transformer ageing rate
	Elapsed transformer life
	Moisture in winding paper
Insulation moisture	Temperature of bubble formation on windings
Bubble formation	Difference between bubble formation temperature and oil
	temperature
Bushings	Indication of dielectric changes in bushings
	Temperature gradient on coolers, cooling efficiency
Cooling system	Pump operating time
• ,	Fan operating time
	Changer position
Tap changer	Wear due to number of changes and load magnitude
	Difference between changer and transformer oil temperature
Trends	Calculations based on parameter changes
Alarms	Crossing of limit values, trends, operating times

\rightarrow Typical Use

On-line diagnostics of power transformers and chokes in transmission and distribution, power station block transformers, forge transformers and important supply transformers.

Detail of measurement connection used for bushing diagnostics on the 400 kV side

\rightarrow System Solutions

- central monitoring system unit processes monitored values, performs expert calculations and archives and aggregates data in an SQL database
- values from the central unit are displayed on workstations on the user's intranet
- immediate parameters and mathematical model outputs are presented through convenient graphical screens with live data
- dangerous situations are indicated using configurable alarms and warnings; changes to status parameters and crossing of user-configured parameter limits are signalled in a similar manner
- histories and trends are displayed in graphs and tables. A graph can
 display multiple parameters with various scales, a magnifying glass can
 be used and limits can be displayed. Tables can be exported into different
 formats
- reports can be printed and exported into various formats
- remote diagnostics of the monitoring system cabinet and its contents down to the component level simplifies maintenance

\rightarrow Design and Build

- central monitoring system unit, including measuring and signalling inputs, is located in a cabinet mounted on the transformer tank. Sensor, instrument and LAN cables terminate within the cabinet
- design and build of equipment corresponds to its use in an outdoor environment with a high level of interference
- gascontent analyzers for transformer oil can be chosen according to application and customer preferences. Both simple and comprehensive DGA analyzers from GE Energy, Kelman, Morgan Schaffer and a large number of other manufacturers are available
- detectors, sensors, instruments and cabling are suitable for mounting on a transformer

Monitoring System Cabinet Interface						
Temperatures	PT100, PT1000, 20 mA sensors					
	1/5 A AC inputs					
Winding currents	Clamp probes for installation without interrupting current					
	20 mA inputs for AC/DC converters					
Voltago in gonoral	100/230 V AC inputs					
Voltage in general	20 mA inputs for AC/DC converters					
Bushing voltage	Measurement using an adaptor connected to the bushing's					
Dustillig voltage	measuring connector					
Equipment status and position	Signalling voltage: 24, 110, 220 V DC					
signalling	230 V AC					
Contact outputs	6 A AC / DC					
Power supply	110 to 230 V AC / DC					
Serial communication	RS-232, RS-485 with galvanic separation					
LAN	Ethernet, fibre optic, metallic					

→ Communication, Data Exchange

- IEC 60870-5-104, DNP 3.0 TCP, Modbus TCP, IEC 61850-8-1 network protocols
- GPRS communication support, IEC 60870-5-104 protocol
- RS-232/RS-485 IEC 60870-5-101, Modbus RTU serial lines
- ODBC interface for data exchange with information systems

•	Přehled	ehled Přepínač Teploty		Modely Ostatní			● Chlazení ● Servis					
	HV				LV					TV		
	U [kV]	mez	1[A]	mez		U [kV]	mez	I[A]	mez		1[A]	mez
L1	415,0	440	180,8	600	L1	119,2	130	622,4	2 000	L1	5,1	6 000
L2	415,4	440	180,5	600	L2	119,3	130	616,0	2 000	L2	4,4	6 000
L3	415,6	440	177,6	600	L3	119,3	130	608,8	2 000	L3	5,1	6 000
Chlazení							Zatře	ení		N	1ST výstr	aha
		Stav	Teplota -	chladič	zatê	ení		130,0 MV	/A 350	Cell	cová	
4	Čerpadlo		vstup	57,7 °C	% z	atížení		35,81 %	100	0611	tova	
'	Ventilátory		výstup	57,1 °C		Přepínač						
2	Čerpadlo		vstup	57,3 °C	polo	ha odbočl	ку	13				
_	Ventilátory		výstup	40,0 °C		Buchholz relé					rvisní výs	strahy
3	Čerpadlo		vstup	47,4 °C	Mnc	žství plynu		0 %	0	Cali	-4-	_
٥	Ventilátory		výstup	39,0 ℃			Calis	sto				cv 📕
4	Čerpadlo		vstup	57,3 °C	obs	obsah vodíku		63,0 ppr	0 ppm 100		MST jednotk	
4	Ventilátory		výstup	39,7 °C	vlhkost v nádobě		bě	13,0 ppr	m 30 MS		T skříň	•
5	Čerpadlo		vstup	52,4 °C		Teploty						
5	Ventilátory		výstup	40,0 °C	teple	ota okolí		Т	23,4 °	С	40	50
6	Čerpadlo		vstup	53,4 °C	teplota horní vrstvy oleje			е	56,1 °	С	80	80
•	Ventilátory		výstup	39,4 °C	teplota dolní vrstvy oleje			е	45,4 °	С	80	80

Screen with live values of main monitored parameters

→ Monitoring System Delivery

- delivery of a comprehensive system including sensors, dissolved gas content analyzer, installation on the transformer and commissioning.
 The customer can perform his own installation according to design documentation
- standard solution for distribution transformers with output in the tens of MVA for a favourable price
- specialized solution for monitoring bushings and processing data from dissolved gas content analyzers
- separate module with mathematical modules with inputs from the customer's system

Paper insulation moisture calculation model - red line Measured values: oil temperature - blue line, oil moisture - green line